
PAGE: Answering Graph Pattern Queries via
Knowledge Graph Embedding

Sanghyun Hong1, Noseong Park2∗, Tanmoy Chakraborty3, Hyunjoong Kang4, and
Soonhyun Kwon4

1 University of Maryland, College Park, Maryland, USA
2 University of North Carolina, Charlotte, North Carolina, USA

3 Indraprastha Institute of Information Technology Delhi, Delhi, India
4 Electronics and Telecommunications Research Institute, Daejeon, South Korea
shhong@cs.umd.edu1, npark2@uncc.edu2, tanmoy@iiitd.ac.in3,

hjkang@etri.re.kr4, kwonshzzang@etri.re.kr4

Abstract. Answering graph pattern queries have been highly dependent
on a technique—i.e., subgraph matching, however, this approach is ineffec-
tive when knowledge graphs include incorrect or incomplete information.
In this paper, we present a method called PAGE that answers graph pattern
queries via knowledge graph embedding methods. PAGE computes the
energy (or uncertainty) of candidate answers with the learned embeddings
and chooses the lower-energy candidates as answers. Our method has the
two advantages: 1) PAGE is able to find latent answers hard to be found
via subgraph matching and 2) presents a robust metric that enables
us to compute the plausibility of an answer. In evaluations with two
popular knowledge graphs, Freebase and NELL, PAGE demonstrated the
performance increase by up to 28% compared to baseline KGE methods.

Keywords: Graph Databases; Graph Query Answering; Knowledge
Graph Embedding

1 Introduction

Graphs/networks are widely used in various fields, e.g., knowledge graphs (KGs) in
the Semantic Web, social networks in Social Analytics, protein-protein interaction
(PPI) networks in Bioinformatics, etc. As their applications are diverse, many
different graph mining paradigms have been proposed: the Semantic Web has
its own knowledge graph query language called SPARQL [14], and Neo4j [10],
the market-leading graph database management system, also has a graph query
language called Cypher. Unfortunately, that progress has been made at search
subgraph patterns from underlying graphs via subgraph isomorphism, often hard
to find answers when the graphs are incomplete or carry incorrect information [11].

Graph embedding methods have come into the light nowadays because of
their promising performance in various tasks such as community detection [7],
link prediction in the social network [12, 17], and query answering on knowledge

∗Corresponding author.

2

graphs [2]. Those methods learn latent vector representations (or embeddings)
of vertices and relations5. Prior works have reported that using embeddings can
provide a way to answer factoid queries6 even with incorrect and incomplete
information [2, 3, 4]. However, KGE methods have only considered simple queries
consisting of a single edge or multiple unidirectional edges—i.e., it has not been
explored whether we can use them to answer general graph queries.

In this paper, we introduce PAGE (Pattern query Answering through knowl-
edge Graph Embedding) that delivers a new paradigm of querying KGs. To
the best of our knowledge, we are the first effort to combine them and explore
the potential of KGE methods in answering graph queries. Advantages of the
proposed approach are twofold:

1. Our method can discover latent patterns which remain hidden in the incom-
plete or incorrect KGs. Rather than relying on the subgraph matching, PAGE
chooses candidate answers for a graph query based on the energy computed
with embeddings, which enables our method to return complete answers.

2. We present a robust metric that can compute the plausibility of an answer.
This metric aids in post-processing after querying KGs. There can be numer-
ous subgraph patterns matched to a graph query; processing all of them is
computationally too expensive. In PAGE, we only identify highly plausible
subgraph patterns and provide them as candidate answers.

In evaluations, we conduct two experiments: 1) factoid query answering and
2) graph query answering with two popular KGs, Freebase and NELL. Our result
demonstrates that PAGE outperforms baseline KGE methods by at most 28%
in terms of standard metrics such as mean rank and Hits@10/100/1000. The
evaluation results show the potential of using KGE methods for answering graph
queries in KGs even though the KGs carry incomplete information.

2 Background

In this section, we introduce the basic concepts of graph pattern query answering
and KGE. Let G = (VG , EG) be a KG and L be a set of relations. VG is a set of
vertices and EG is a set of edges labeled by one of the relations in L. A relation
in L means a certain type of relationship between vertices.

2.1 Graph Query Answering

Given a KG G and a graph query Q = (VQ, EQ), the task of conventional graph
query answering is to find all subgraph patterns of G matched to Q via subgraph
isomorphism [16].

5A relation is an edge label. A KG is an edge-labeled graph.
6Factoid queries are the simplest type of graph queries such as “who visited Canada?”,

denoted as ?x
visited−−−−→ Canada.

3

(a) Knowledge Graph G (b) Graph Pattern Query Q

Fig. 1: An example KG (a) and graph pattern query (b). (Note that ?p, ?c, and
?s are variables in the query (b), and the answers are Trump, C2, and P2 of G.)

Example 1 (Graph Pattern Query with Projection). In Figure 1, the graph query
searches for a child ?c of the president ?p of the United States, who had visited
Canada before and is a friend of a pop star ?s. The answer is C2 because
{?c = C2, ?p = Trump, ?s = P1} is a valid subgraph that matches the query.

In query languages, a graph pattern query is expressed as a series of path
queries. We write the example query in Neo4j’s Cypher query language as follows:

Query 1.1: Cypher representation of the query in Figure 1 (b).

MATCH (US)<−[:isPresidentOf]−(?p)−[:hasChild]−>(?c)
MATCH (US)<−[:isPopStarOf]−(?s)−[:Friend]−>(?c)
MATCH (?c)−[:Visited]−>(CANADA)
RETURN ?c

Note that each path query is projected to a vertex matched to ?c. As shown in
the above expression, the problem of answering a graph query can be decomposed
into: answering each path query, coming up with a set of candidate answers, and
choosing the common answer among candidates. This observation sheds light on
how we can answer the general form of graph queries.

2.2 Knowledge Graph Embedding

KGE methods map vertices and relations into a d-dimensional continuous vector
space. TransE, SE, and SME [2, 3, 4] are the most popular and pioneering works;
those methods answer a factoid query by using the concept of energy. Given
a semantic triple t = (v, r,u) in a KG, the energy of the triple indicates the
uncertainty (or error) such that a high energy level means a high uncertainty of
the triple. The v and u stand for vertices, r is a relation between them, and we

4

Fig. 2: An example of TransE embedding: in TransE, a triple v, r, u (on the
left side) are mapped into the 3-dimensional space (on the right side). v + r,
represented by the blue vertex, is the prediction of v’s neighbor connected through
r that minimizes the energy (error) ‖v + r − u‖, which refers to the distance
between the blue vertex and u.

use a bold character to denote an embedding vector. The energy can be defined
in various ways:

1. In TransE, e(v, r, u) = ‖v + r− u‖1 or 2
7.

2. In SME, e(v, r, u) = gv(r,v)T · gu(r,u), where gv and gu are linear or bilinear
functions.

3. In SE, e(v, r, u) = ‖rlv − rru‖1 or 2, where rl and rr are left and right
projection matrices8 representing r.

In training, KGE methods learn the vector representations (or embeddings)
of vertices and relations by minimizing the following loss function:

L =
∑
t+∈E

∑
t−∈N (t+)

max
(
0, γ + e(t+)− e(t−)

)
, (1)

where E is a set of triples, N (t+) is a set of negative triples t− derived from true
triples t+ ∈ E , γ is a margin, and e(·) is the energy of a triple. For instance,
e(v, r,u) = ‖v + r− u‖ in TransE such that a true triple that exists in the KGs
makes the e(·) zero—i.e., v + r = u (see Figure 2). Thus, training with this loss
function decreases the energy of the true triples while increasing the energy of
false triples such that they differ by at least γ.

With the learned embeddings, existing works answer two types of queries:

1) factoid queries u
r−→?x and 2) unidirectional path queries u

r1,r2,···−−−−−→?x9 [6] by
finding the top-k answers that have the smallest energy among all the candidate
answers for ?x.

7‖ · ‖1 (resp. ‖ · ‖2) refers to the `1-norm (resp. `2-norm) of a vector.
8After vectorization, a matrix can still be represented by a vector.
9Note that ri means an intermediate relation in the path between u and ?x, and all the
relations have the same direction.

5

Finding a set of candidate answers relying on the energy provides two advan-
tages: 1) this enables us to find the latent answers, and 2) the methods works
with KGs that include incomplete information. In this work, we further extend the
KGE methods to answer the general form of a graph pattern query, which enables
to answer the query without subgraph isomorphism (or subgraph matching).

3 Graph Query Answering via KGE

Using existing KGE methods to answer graph pattern queries has a major
problem—i.e., those methods are limited to answer factoid or unidirectional path
queries (see Sec. 2.2). However, general graph queries involve bi-directional path
queries as shown in Query 1.1. In addition, it is well-known that considering
multiple-hop paths makes KGE methods vulnerable to accumulated errors because
an error in an edge can be amplified after multiple hops [6]. This motivates us to
present a new query model and a training method. In this section, we introduce
PAGE, a novel method that enables us to answer graph queries on incomplete
KGs via knowledge graph embeddings without relying on subgraph isomorphism.

3.1 PAGE Energy Definition and Query Model

Dropping Subgraph Isomorphism. Subgraph isomorphism (or subgraph
matching) has traditionally been considered as the key to answer graph pattern
queries. However, the quality of the answers drastically decreases when the
underlying KG is not complete or contains incorrect knowledge. This is the
well-known problem since constructing a KG from web pages or documents is
challenging, and the KG usually carries incorrect knowledge representation [15].
To overcome this issue, we drop the subgraph isomorphism in the proposed
PAGE query model. Instead, we utilize KGE methods that provide high accuracy
in answering factoid or unidirectional queries and is able to rectify incorrect
knowledge [15].

The Energy of a Bidirectional Path Query. In our model, we consider a
graph query as a set of bidirectional path queries (see Sec. 2.1). To answer a
graph query, we first need to answer each bidirectional path query via KGE
methods. However, most KGE methods have been proposed without considering
bidirectional path queries—i.e., the operators used to compute the energy are not
invertible. Thus, we define the regular and inverse energy operations as follows:

Definition 1 (Regular Operation). Given a query v
r−→?x, the regular opera-

tion is to find x such that energy(v, r,x) = 0, e.g., x = v + r in TransE. This

answers a query v
r−→?x.

Definition 2 (Inverse Operation). Given a query ?x
r−→ u, the inverse oper-

ation is to find x such that energy(x, r,u) = 0, e.g., x = u− r in TransE. This

answers a query ?x
r−→ u.

6

For instance, suppose that we compute the energy of a bidirectional 2-hop path
query ?c

r1←− Trump
r2−→ US in TransE. The inverse operation of the energy is

derived in a straightforward manner (see Sec. 3.3). Thus, the energy is computed
as e(e) = |u− r2 + r1|, where u is US, and the answers can be C1/C2 close to
the vector e. With the operations, we define the energy of a bidirectional path.

Definition 3 (Energy of Bidirectional Path). Given an h-hop bidirectional
path p in a KG, whose left-end is a vertex u ∈ V and right-end is a vertex v ∈ V
with a series of intermediate relations r1, · · · , rh, let x be a vector calculated after
a series of regular and inverse operations starting from u up to rh−1. The energy
of the bidirectional path is then defined in TransE as:

energy(p) =

{
||x + rh − v||, if the last edge is

rh−→ v

||v + rh − x||, if the last edge is
rh←− v

,

Note that this bidirectional path energy definition is independent from un-
derlying triple energy definitions. We also test a couple of different triple energy
definitions in our experiments. Now we can define the energy of a graph query
by using the sum of all the energy of bidirectional paths in the query:

Definition 4 (Energy of a Graph Query). Let Q be a pattern query and q
be an answer candidate to Q, the energy of the graph query, denoted as e(q), is
defined as:

energy(q) =
∑

p∈paths(q)

energy(p) (2)

, where paths(q) returns bidirectional paths of q that are matched to bidirectional
path queries of Q.

Therefore, answering a graph query Q is to find a bidirectional paths p in a
KG such that energy(p) is minimized.

3.2 Improve the Training Step of KGE Methods

To leverage the new energy definition that supports the regular and inverse
operations in PAGE, we need to improve the training process of KGE methods.
We first sample spanning trees from KGs and decompose each tree into a set
of bidirectional paths between two terminal vertices (or degree 1 vertices) in
the tree. We then create a set of false paths by altering one terminal vertex of
a true path and use both true and false path sets as our training data. This
improvement enables KGE methods to learn embeddings of vertices and relations
used for answering graph pattern queries.

Sampling Spanning Trees We sample spanning trees from the training sets
in Sec. 4.1 by performing the following procedure.

1. Randomly choose a vertex from a KG G.

7

(a) Spanning Tree (b) Path 1 (c) Path 2 (d) Path 3

Fig. 3: An example spanning tree (a), and its three terminal-to-terminal decom-
positions (b), (c), and (d).

2. Perform the Join 3(b) of the FFSM [8] e times so that a spanning tree with
e edges will be sampled10.

3. Repeat 1 and 2 until all vertices and edges of the graph G are covered by at
least c different sampled spanning trees.

To ensure a set of comprehensive samples, we utilize the sampling procedure
with multiple e values—i.e., we use e up to 4 in our experiments. This method
also allows frequently appearing edges in G to be more sampled than others,
which is fair because those edges are more likely to be the part of answers for a
graph query. We derive false spanning trees from a true spanning tree by applying
the Join 3(b) of the FFSM e times with the edges not in G.

Decomposing Spanning Trees into Bidirectional Paths. Since our method
considers each bidirectional paths p from a spanning tree t as a training case, we
compute the energy of a path by decomposing the sampled spanning trees. For
instance, in Figure 3, we can extract three terminal-to-terminal bidirectional paths
from a sampled spanning tree. We utilize the concept introduced in Definition 3
to compute the energy of each case.

Margin-based (Hinge) Loss Function PAGE does not only minimize the total
energy of training paths decomposed from sampled spanning trees, but also tries
to obtain a reasonable energy margin between a training path and false paths
derived from the training path. We utilize the same loss function as described
in Equation (1) with our own energy definition. Given a training path t+ and
a false path t− created by randomly modifying one terminal vertex of t+, t+’s
energy is required to be smaller than that of t− by a margin of γ. If this is the
case for all true and false paths, then the loss function becomes 0, which means
a perfect embedding.

10The Join 3(b) operation simply appends one random vertex to the terminal position of
the current tree such that the extended tree can be also a valid subtree in G

8

Input: KG G = (VG , EG), Max iteration max iter, Learning rate δ
Output: Embedding matrix M for vertices and relations

1 M← d× n matrix with random initialization
2 T ← sampled true spanning trees
3 while iter ≤ max iter do
4 T ← random permute(T)
5 foreach Tbatch ∈ minibatch split(T) do
6 N (Tbatch)← sampled false spanning trees from each t+ ∈ Tbatch
7 M = M− δ ×∇ML(Tbatch,N (Tbatch))

8 M = M
||M||F

9 return M

Algorithm 1: The embedding algorithm used in PAGE

3.3 Infeasible Cases of Existing KGE methods

In this section, we formally prove that some KGE methods cannot answer graph
queries because the inverse operation in each method is not unique or cannot
defined.

Theorem 1. The inverse operator of SME is not unique.

Proof. Given a query ?x
r−→ u, r and u, the inverse operator is defined as finding

a vertex x mapped to ?x such that energy(x, r,u) = 0. In SME, energy(x, r,u) =
gv(r,x)T · gu(r,u). Let X = gv(r,x) and Y = gu(r,u); thus, energy(x, r,u) =
XT · Y . Note that X and Y are both d× 1 column vectors. When XT · Y = 0,
w ·X, where w is any scalar coefficient, an energy of 0 also arises, which implies
that any x′ can be a solution as long as gv(r,x′) = w ·X. There are so many
such w that w · x′ can be a solution of the inverse operator.

Theorem 2. In some variations of TransE, the inverse operator cannot be
defined or is not computationally desired.

Proof. Due to space constraints, we sketch a proof. The key idea is: i) to prove the
existence (or uniqueness) of the inverse of a generative model (TransG) and ii) to
discuss the inverse matrix computation time during the loss minimization (TransH,
TransD and so on). For instance, TransG learns multiple vector representations
for a relation r. Thus, energy(v, r, u) is a weighted sum of several different energy
levels. Each vector representation leads to a different energy level, which can
be simply written as

∑
wi · energyi(v, r, u), where energyi(v, r, u) is the energy

level defined by the ith vector representation of r. Given a query edge ?x
r−→ u,

there are many such candidates of ?x that the weighted sum equals zero. Thus,
the inverse operator solution of TransG also cannot be uniquely defined.

3.4 Embedding Algorithm

Let M be a d×n embedding matrix, where n = |VG|+ |L|—i.e., each column of M
is an embedding of a vertex or a relation. We use the projected stochastic gradient

9

Database Vertices Relations Training Edges Testing Queries Validating Queries

FB15K 14,951 1,345 483,142 50,000 59,071

Nell186 14,463 186 31,134 5,000 5,000

Table 1: Statistics of the FB15K and Nell186 databases

descent (SGD) method described in [7] to compute the M that minimizes the
loss function in Eq. 1. In Algorithm 1, we first randomly initialize M (line 1) and
sample spanning trees from G (line 2). In each iteration, we randomly permute
sampled spanning trees T (line 4) and update M w.r.t. the gradient of the loss
term (line 7). The SGD computation is efficiently done by various deep learning
platforms with the support of GPUs11. At the end of each iteration (line 8), we
project M onto the unit sphere to prohibit M from being extremely large during
iterations.

4 Evaluation

We evaluate PAGE in two tasks: 1) factoid query answering and 2) graph query
answering. We expect that PAGE based on KGE methods outperform in the
aforementioned two tasks than the baseline KGE methods.

Baselines. We use TransE and SE as our baseline methods because they support
both regular and inverse operations. Other KGE methods such as SME and some
variations of TransE are excluded because they cannot define unique inverse
operations from their energy definitions (see Sec. 3.3). In our experiments, we
denote the TransE improved by the proposed training process as PAGE-TransE
and the improved SE as PAGE-SE.

Experimental Setup. We implement PAGE in Python 2.7 with Theano deep
learning library12. In evaluations, we run PAGE on Amazon EC2 instances of type
g2.2xlarge equipped with an Intel Xeon E5-2670 processor that has eight
processor cores, 15GB of RAM, and a Nvidia Tesla GPU with 4GB of video
memory and 1,536 CUDA cores.

4.1 Databases and Evaluation Metrics

In this subsection, we discuss our databases and metrics.

Databases. We conducted experiments on datasets from two popular KGs:
FB15K [3] is a subset of Freebase, and Nell186 [5] is a subset of NELL containing
the most frequent 186 relations. In both KGs, we have well-defined training

11We used the Theano [1], one of the most popular deep learning platform.
12Theano is one of the most popular deep learning platforms. Optimizing the loss function

with the SGD method can be performed efficiently with the support of GPUs.

10

Database Metric Type TransE PAGE-TransE SE PAGE-SE

FB15K

Mean Rank
Micro 181.76 178.98 408.69 375.48

Macro 109.02 106.09 412.04 364.24

Hits@10/100
Micro 43.4% / 76.6% 44.2% / 76.2% 21.9% / 59.2% 22.3% / 59.3%

Macro 49.2% / 81.3% 49.4% / 80.9% 27.6% / 62.8% 28.9% / 62.8%

Nell186

Mean Rank
Micro 885.54 784.02 3412.0 3752.5

Macro 885.54 784.02 4492.2 4736.8

Hits@10/100
Micro 41.5% / 74.6% 38.6% / 72.4% 10.1% / 15.75% 9.2% / 14.5%

Macro 41.5% / 74.6% 38.6% / 72.4% 3.3% / 8.0% 3.0% / 7.1%

Table 2: Mean ranks and Hits@10/100/100 for the factoid query task. (The best
values are marked in bold font.)

graphs and factoid testing/validating queries. We sample spanning trees from
training graphs and also create random graph pattern queries as follows.

1. Merge training and test sets into one KG.

2. Randomly select a vertex v from the test set.

3. Create z paths by iterating the following steps z times.

(a) Choose a length in between 2 and 4.

(b) Randomly select a path of the chosen length starting from v. This path
should have at least one edge in the original test set.

4. Convert v and all intermediate vertices of the sampled paths into variables
and create a graph query Q.

5. The correct answer to the query Q is v, i.e., we are interested only in finding
an entity mapped to the variable converted from v.

The statistics of our datasets are summarized in Table 1.

Metrics. We use the same evaluation metrics as in previous studies: 1) the
average rank of the correct answers among the entities sorted in ascending order
of energy (mean rank), and 2) the proportion of correct answers ranked in the
top 10/100/1000 (Hits@10/100/1000).

4.2 Factoid Query Answering

Table 2 summarizes the results of the factoid query answering task. The best
performances are shown in TransE cases, and SE shows the worse performance
than TransE for all the datasets across all the metrics. Thus, our discussion
focuses on the TransE and PAGE-TransE cases. In terms of the mean rank, PAGE-
TransE demonstrates at most 13% better performance than the baseline TransE.
The performance of TransE and PAGE-TransE in terms of Hits@10/100 is similar
in FB15K whereas TransE performs slightly better in Nell186.

11

Database Metric Type TransE PAGE-TransE SE PAGE-SE

FB15K

Mean Rank
Micro 1150.5 1088 7493.5 7514.0

Macro 2509.9 2362.8 7571.4 7933.7

Hits@100/1000
Micro 18.3% / 56.7% 25% / 60% 1.7% / 5.0% 1.7% / 10%

Macro 19% / 58.7% 24.3% / 61.7% 2.0% / 6.0% 2.0% / 7.7%

Nell186

Mean Rank
Micro 38.5 38 4803.6 4960.1

Macro 769.4 491.1 5240.3 5431.8

Hits@100/1000
Micro 64.8% / 89.4% 66.5% / 94.6% 15.75% / 31.4% 14.5% / 28.9%

Macro 60.2% / 80.7% 65.4% / 87.2% 7.9% / 23.4% 7.1% / 21.3%

Table 3: Mean ranks and Hits@10/100/100 for the graph task. (The best values
are marked in bold font.)

PAGE that involves proposed training process did not show the best perfor-
mance in all the factoid query answering tasks. However, PAGE demonstrates
similar accuracy in terms of Hit@100 and is better in graph query answering (see
Sec. 4.3. In more than 70% to 80% of the testing queries, correct answers are part
of the top-100 candidates, which means our approach is generally applicable.

4.3 Graph Query Answering

In Table 3, we summarize the results of the graph query answering task. Since the
graph query answering is a more difficult task than the factoid query answering,
we use Hits@100/1000 instead of Hits@10. Similar to the factoid query answering
results, SE exhibits worse performance than TransE, thus, our comparison focuses
on the TransE cases. As expected, PAGE-TransE significantly outperforms TransE
in all cases, which implies that considering of terminal-to-terminal bidirectional
paths in the training process enables answering graph queries. In detail, PAGE-
TransE demonstrates 9% to 28% enhancements for Hits@100 (19% to 24.3% in
FB15K and 60.2% to 65.4% in Nell186) compared to the original TransE.

5 Discussion

Complexity Issue of the PAGE Query Model Dropping the subgraph iso-
morphism enables to find latent answers since any vertex can be a candidate
answer of a variable. However, considering entire vertices as candidate answers is
not computationally preferred. For instance, in the mixed-directional path query
?c

r1←−?y
r2−→?z

r3←− US, the number of candidates can be exponentially increased
once we decided to search candidates for the intermediate variables ?y and ?z.
Instead, our method excludes intermediate variables in a mixed-directional query
path from candidates and computes the energy between ?c and US by considering
only the relations r1, r2, and r3 (and their directions). This approach decreases

12

computations and enables a lightweight query processing time complexity—i.e.,
kn rather than km, where k is the number of candidates for a variable, m is the
number of all variables, and n� m is the number of non-intermediate variables.

Qualitative Comparison with Approximated Graph Query Model Many
approximated graph query answering models have been proposed [9, 13]. These
models partially ignore the subgraph isomorphism by allowing missing edges in
a KG or considering only semantically similar edges. However, there is a case
in which the answers from such models cannot be one of the top-rank answers
whereas our model ranks any low-energy candidate highly. For instance, in the
worst case, suppose that the query is ”Who is the athlete who won the U.S. Open
against Roger Federer and is a teammate of Andy Murray?”. The correct answer
is Andy Roddick, however, the following two triples are not contained in the
training set of Nell186 [5]:

Andy Roddick
won−−−→ US Open

Andy Roddick
isTeammateOf−−−−−−−−−−→ Rodger Federer

No existing approximate query model can answer this query correctly because all
query edges are not matched for Andy Roddick, however, our PAGE model had
listed Andy Roddick as one of the top-20 candidates (more precisely, the 18th
candidate in terms of energy) among all the vertices.

6 Conclusion

This paper is the first work that tackles the problem of subgraph matching by
utilizing KGE methods. We propose PAGE, a novel query model that enables to
answer general graph queries on incorrect or incomplete KGs, which provides
a new paradigm of querying KGs. Our work has two contributions to data
mining and KGE research: 1) we demonstrated that a graph query (or a complex
form of a query) can be answered through KGE methods by decomposing the
query into multiple mixed-directional path queries, and 2) we achieved the same
performance in simple query answering task and the better performance in graph
query answering task with two popular KGs. In evaluations, the performance
enhancement is at most 28% compared to the baseline KGE methods.

References

[1] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins,
G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: A cpu and gpu math
compiler in python. In: Proc. 9th Python in Science Conf. pp. 1–7 (2010)

[2] Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy
function for learning with multi-relational data - Application to word-sense
disambiguation. Machine Learning 94(2), 233–259 (2014)

13

[3] Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.:
Translating Embeddings for Modeling Multi-relational Data. In: NIPS. pp.
2787–2795 (2013)

[4] Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning Structured
Embeddings of Knowledge Bases. In: AAAI. AAAI Press, San Francisco,
USA (2011)

[5] Guo, S., Wang, Q., Wang, B., Wang, L., Guo, L.: Semantically Smooth
Knowledge Graph Embedding. In: ACL. pp. 84–94. The Association for
Computer Linguistics (2015)

[6] Guu, K., Miller, J., Liang, P.: Traversing knowledge graphs in vector space.
In: Empirical Methods in Natural Language Processing (EMNLP) (2015)

[7] Hong, S., Chakraborty, T., Ahn, S., Husari, G., Park, N.: Sena: Preserving
social structure for network embedding. In: Proceedings of the 28th ACM
Conference on Hypertext and Social Media. pp. 235–244. ACM (2017)

[8] Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the
presence of isomorphism. In: Proc. Third IEEE Int. Conf. Data Mining 2003.
pp. 549–552 (Nov 2003). https://doi.org/10.1109/ICDM.2003.1250974

[9] Khan, A., Wu, Y., Aggarwal, C.C., Yan, X.: Nema: fast graph search with
label similarity. In: Proc. of the 39th international conference on Very Large
Data Bases. pp. 181–192 (2013)

[10] Neo4j: The worlds leading graph database (2017)
[11] Paulheim, H.: Knowledge graph refinement: A survey of approaches and

evaluation methods. Semantic web (Preprint), 1–20 (2016)
[12] Perozzi, B., Al-Rfou’, R., Skiena, S.: DeepWalk: online learning of social

representations. In: KDD. pp. 701–710. ACM (2014)
[13] Pienta, R., Tamersoy, A., Tong, H., Chau, D.H.: Mage: Matching approximate

patterns in richly-attributed graphs. In: BigData Conference. pp. 585–590
(2014)

[14] Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF.
W3C Recommendation (2008)

[15] Ren, X., Wu, Z., He, W., Qu, M., Voss, C.R., Ji, H., Abdelzaher,
T.F., Han, J.: Cotype: Joint extraction of typed entities and relations
with knowledge bases. In: Proceedings of the 26th International Confer-
ence on World Wide Web. pp. 1015–1024. Geneva, Switzerland (2017).
https://doi.org/10.1145/3038912.3052708

[16] Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1),
31–42 (Jan 1976). https://doi.org/10.1145/321921.321925

[17] Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 1225–1234. ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2939672.2939753

