
On Integrating Knowledge Graph Embedding into SPARQL Query Processing

Hyunjoong Kang‡, Sanghyun Hong∗, Kookjin Lee∗, Noseong Park†, Soonhyun Kwon‡

Electronics and Telecommunications Research Institute‡, Daejeon, Korea
University of Maryland∗, College Park, USA

University of North Carolina†, Charlotte, USA
kanghj@etri.re.kr, {shhong,klee}@umd.edu, npark2@uncc.edu, kwonshzzang@etri.re.kr

Abstract—SPARQL is a standard query language for knowl-
edge graphs (KGs). However, it is hard to find correct answer if
KGs are incomplete or incorrect. Knowledge graph embedding
(KGE) enables answering queries on such KGs by inferring un-
known knowledge and removing incorrect knowledge. Hence,
our long-term goal in this line of research is to propose a new
framework that integrates KGE and SPARQL, which opens
various research problems to be addressed. In this paper, we
solve one of the most critical problems, that is, optimizing
the performance of nearest neighbor (NN) search. In our
evaluations, we demonstrate that the search time of state-of-
the-art NN search algorithms is improved by 40% without
sacrificing answer accuracy.

Keywords-SPARQL Query Processing; Knowledge Graph
Embedding; Nearest Neighbor Searching

I. INTRODUCTION

SPARQL is a standard language for querying knowledge
graphs (KGs). It finds answers based on existing knowledge
in KGs. However, it is hard to expect complete answers from
SPARQL if underlying KGs are incomplete or incorrect.
Thus, the ultimate goal of our research is to make the
framework more resilient against such cases.

Recent researches on knowledge graph embedding (KGE)
provide a way to infer missing knowledge and to clean
incorrect knowledge on KGs [1]–[3]. To our knowledge,
however, no works attempt to integrate KGE and
SPARQL to handle the aforementioned problem. We try
to integrate them for the first time. We envision many brand-
new applications based on this approach. However, there
are multiple problems that should be solved to completely
combine them. In this Work-In-Progress paper, we narrow
down our scope to solve the most critical problem —
i.e., searching nearest neighbors (NNs) in an embedding
space. We propose a new loss function that maximizes
the pruning effects of existing state-of-the-art NN search
algorithms while preserving the inference accuracy. It is
well-known that the NN search in a high-dimensional space
is notoriously hard and has been an open problem for the last
few decades. Thus, our solution is generating embeddings

† Corresponding author; This work was supported by the National Research
Council of Science & Technology (NST) grant by the Korea government
(MSIP) [No. CRC-15-05-ETRI].

that are suitable for the NN search algorithms rather than
proposing a new NN search algorithm. We do not consider
approximated NN search methods because they do not lead
to correct answers after embedding KGs.

Our experiments show that embeddings generated by our
loss function can decrease the NN search response time by
at most 40%.

II. RELATED WORK AND PRELIMINARIES

In a KG, relationships between entities are represented by
triples (v, r, u), where v and u are entities (or vertices) and
r is a relation (or edge label). For example, the knowledge
”Trump is the president of the USA” can be expressed as
a triple (Trump, isPresidentOf, USA). A collection of such
triples compose a huge connected graph denoted by G =
(V, E , L), where V is a set of vertices, E is a set of edges
(or relationships), and each edge is labeled by a relation
r ∈ L.

One important application of KGs is question answering
(QA). In the previous example, Trump should be returned to
the question (or query) “Who is the president of the USA?”.
However, the answering task will be challenging if the exact
answer does not exist in G.

Recent works about KGE [1]–[10] show the possibility to
accomplish the challenging task. KGE maps vertices and re-
lations onto a d-dimensional vector space and infers missing
triples. TransE is the most popular and pioneering method.
TransE measures the energy of a triple that indicates the
uncertainty (or error) of the triple — i.e., the higher the
energy is, the larger the uncertainty (or error) is. Hereinafter,
we use a bold character v (resp., r) to denote a d×1 column
vector representation of a vertex v (resp., a relation r).

Definition 1 (Energy): Given a triple t = (v, r, u), the
energy of a triple e(t) is defined as e(v, r, u) = ‖v + r −
u‖`1 or `2 in TransE

Example 1 (TransE): In Figure 1, v, r, and u (on the left
side) are mapped into the 3-dimensional embedding space
(on the right side). v + r, the blue colored vertex, is the
predicted vector of v’s neighbors connected through r. In
this case, the energy of the triple (v, r, u), denoted as ‖v+
r− u‖, indicates the distance between the predicted vector
and u in the space.

Figure 1: An example TransE embedding. The blue vertex
v+r is the prediction by TransE, and u is the actual answer.

KGE learns vertex and relation vector representations
(or embeddings) by minimizing the following max-margin
(hinge) loss function:

L =
∑
t+∈E

∑
t−∈N (t+)

max
(
0, γ + e(t+)− e(t−)

)
, (1)

where E is a set of triples in G and N (t+) is a set of negative
(or false) triples derived from a true triple t+ ∈ E . t− ∈
N (t+) differs from t+ in only one vertex. For instance,
two negative triples, (Trump, isPresidentOf, UK) and (Bill
Gates, isPresidentOf, USA), can be derived from the true
triple (Trump, isPresidentOf, USA).

III. INTEGRATING KGE AND SPARQL
We introduce the basic concept of SPARQL query pro-

cessing, followed by the discussion about the sketch of the
integrated framework.

A. SPARQL Query Processing.

Triples are typically stored in a three-column table where
each column represents sources, relations, or targets (see
Figure 2), although there exist some different types of
implementations. To reduce response time, the table is
usually indexed by the B+-tree algorithm. Let us execute
the following SPARQL Query 1 against the KG in Figure 2.

SELECT ?p ?c ?s
WHERE {

?p isPresidentOf U.S. .
?p hasChild ?c .
?s isPopStarOf U.S. .
?s isFriendOf ?c .
?c visited Canada .
}

SPARQL Query 1: ?p, ?c, and ?s are variables and should be
substituted with real vertices.

The query finds answers about a child ?c of the U.S.
President ?p who has a U.S. pop star ?s as a friend
and visited Canada. One valid answer is clearly {?p =
Trump, ?c = C2, ?s = P1}. Note that C1 cannot be an
answer because C1 did not visit Canada.

Source Relation Target

Trump hasChild C1

Trump isPresidentOf U.S.
...

...
...

Figure 2: An example of knowledge graph and its three-
column-table representation.

However, let us assume that C1 had actually visited, but
the triple is mistakenly missing. C1 should be an answer
in this case, but the existing SPARQL query processing
method cannot find it. Thus, we use KGE methods to infer
the missing knowledge and attempt to answer the SPARQL
query.

B. Sketch of the Integrated Framework.

In the integrated framework, KGE inserts candidates for
each variable, e.g., ?c, ?p, and ?s in the previous example,
in addition to existing candidates. For this, our framework
needs a spatial DBMS and NN search since the energy
is defined as the distance in the embedding space (see
Example 1). The advantage of our framework is twofold:
1) the framework is different from inexact (or approximate)
graph query answering [11], [12] because answers returned
from our method are characterized by strong confidence and
are not approximated, and 2) we can still use the advanced
query features in SPARQL in conjunction with the inference
capability.

IV. PROPOSED KGE IMPROVING NEAREST NEIGHBOR
SEARCH

The main challenge in integrating KGE methods into
SPARQL query processing is to optimize the NN search
performance. Note that even if there have been remarkable
accomplishments in optimizing the NN search [13], [14], it
has been remained as a long-standing open problem.

Given a graph query, our framework first needs to check
energy levels and find nearest neighbors in the embed-
ding space. For this, the NN search is required, hence,
optimizing the NN search performance can improve the

Databases Method KD Tree Ball Tree FNNS OBFS Mean Rank Hits@10

FB15K

TransE (original) 0.754 sec 0.65 sec 0.703 sec 0.67 sec 197.7 44.61 %

TransE (β = 16) 64.7 % 68.4 % 60.5 % 59.7 % 197.4 45.25 %

SE (original) 0.901 sec 0.756 sec 0.661 sec 0.965 sec 53.0 25.17 %

SE (β = 8) 97.3 % 96.9 % 97.2 % 95.9 % 53.0 25.18 %

WN18

TransE (original) 0.546 sec 0.437 sec 0.446 sec 0.378 sec 337.61 88.93%

TransE (β = 4) 77.8 % 82.8 % 88.1 % 81.8 % 328.76 89.25%

TransR (original) 0.516 sec 0.61 sec 1.012 sec 1.132 sec 232.1 92.31%

TransR (β = 16) 76.3 % 107.3 % 94.2% 93.9 % 232.1 92.34%

Table I: Average response time of NN search algorithms and query answering accuracy. We show absolute response time in
seconds for baseline methods (marked with “original”) and relative response time in percentages for the proposed method.
Note that the best values are indicated in bold.

overall performance of our framework. Thus, we focus on
improving the NN search performance in the rest of this
section. As mentioned earlier, we do not design a new
NN search algorithm but redesign the loss function used
by KGE methods to generate vector representations that
can maximize the pruning effects of existing NN search
algorithms.

Redesign the Loss Function.: Our solution is to re-
design the loss function used for KGE methods to generate
vector representations that improve the NN search perfor-
mance. We propose the following loss term:

L2 = L+ α‖C− CM‖F , (2)

where L is the loss function in Equation (1), C is the ideal
covariance matrix, M is the d×|V| matrix containing column
vector representations of vertices, CM is the d×d covariance
matrix of M, and ‖ · ‖F denotes the Frobenius matrix norm.
The covariance matrix CM is calculated as follows:

CM = E[(M− E[M])(M− E[M])ᵀ]. (3)

The key idea behind our loss redesign is that the covariance
of the learned matrix M should have a certain ideal form
C such that the vector representations (or embeddings) are
well-spread in the early dimensions of the embedding space.
Given a query point, most NN search algorithms depend on
the strategy that prunes a point if its distance from the query
point is greater than the distance between the query point
and a temporary nearest neighbor. In such algorithms, the
distance calculation between two points starts from the first
dimension to make the pruning more efficient. For instance,
this strategy is highlighted in red in the optimized brute-
force search [13] (or the linear projection search [14]) shown
in Algorithm 1. Starting from the first dimension (line 5),
the algorithm incrementally updates the distance (line 6). If
the intermediate distance is greater than the distance from
a temporary nearest point, then the point is pruned without
further updates (line 7). Thus, if the learned embeddings are

Input: A search point p
Output: The nearest neighbor x of p

1 x← a random vertex in V
2 min dist← ‖p− x‖1
3 foreach vertex v ∈ V do
4 dist← 0
5 for 1 ≤ i ≤ d do
6 dist += |pi − vi| or |pi − vi|2
7 if dist ≥ min dist then break
8 if dist < min dist then
9 x← v

10 min dist← dist
11 return x

Algorithm 1: Optimized Brute-Force Search (OBFS) seeks
the nearest neighbor x of a point p in terms of the L1 or
squared L2 norm. (this simple algorithm is faster than other
methods (see Sec V) and is easy to parallelize.)

well-scattered over the space in the early dimensions, the
efficiency of the pruning process will be maximized.

Ideal Covariance Matrix: The ideal covariance matrix
should be the diagonal matrix that satisfies the following
conditions:

1) All non-diagonal elements should be zero to ensure that
all d dimensions are independent of each other.

2) The diagonal elements should be non-zero and decreas-
ing exponentially as a function of the index number i;
let ci, 1 ≤ i ≤ d, be the i-th diagonal element of C,
we utilize the squared exponential function to generate
the ideal diagonal elements:

ci = exp(−i2/β2), (4)

where β is a scaling parameter. This ensures that the
earlier dimensions are well-scattered because ci denotes
the variance of the i-th row vector of M.

Our idea is closely related to principle component analysis
(PCA) in that both assume that there exist principle compo-
nents of the embedding space and the early dimensions make
the points mostly distinguishable. However, there is the key
difference that we fix the principle components in an ideal
form in Equation (4) and let the covariance matrix CM close

to it whereas PCA searches does not assume any ideal forms.
We found in our experiments that the term added to our
loss function weighed by α in Equation (2) can be regarded
as a regularizer. Even if the term is not designed to have
a regularization effect, our experimental results report that
the query answering accuracy can be slightly increased in
certain cases — we do not claim this point strongly because
it is not our main focus. However, this is the most desirable
scenario, where our new loss function improves not only the
answering accuracy but also reduces the NN search response
time. Thus, our new loss function L2 can be seen as a loss
function based on L with the covariance-based regularizer.

V. EVALUATION

We evaluate our method with four search algorithms: KD
tree, Ball tree, OBFS, and FNNS [13].

We first calculate vector representations with various
KGE methods and utilize them as inputs to the NN search
algorithms. Seven KGE methods (TransE, SME, SE, TransR,
TransD, TransH and TransG) were tested considering their
popularity. Three representative cases (TransE, TransR, and
SE) are reported in Table I. SME shows similar patterns to
SE. TransD and TransH are omitted because TransR results
are similar to their results. TransG is also improved a lot by
the proposed loss function but its improvement ratio is close
to that of TransE. Thus, we selected the three representative
cases to show.

Datasets.: We use two standard evaluation KGs:
FB15K and WN18 that have thousands of validation and
testing questions [1].

Metrics: We measure the search response time in
seconds and the inference accuracy in terms of mean rank
and Hits@10. The mean rank is the average rank of correct
answers among candidates sorted in ascending order of
energy. Hits@10 is the ratio of test questions where their
answers are one of the top-10 lowest-energy candidates. Low
mean rank values are desired whereas Hits@10 should be
high.

Results: Our results are summarized in Table I. For
all the experiments, we set α = 1/|V| and find β through
validation. Algorithms marked with “original” show its
original response time when trained with the original loss
in Equation (1). For our method, we show the relative
response time in comparison with the original response time.
In terms of response time, TransE mostly achieved the best
performance with the Ball tree, FNNS and OBFS when
β = 16 for FB15K and β = 4 for WN18. However, TransR
demonstrated the best with the KD tree when β = 16 for
WN18. For the accuracy, we found that TransE is improved
whereas SE and TransR are not sensitive to the loss function
modifications. Interestingly, our method achieved the mean-
rank improvement from 337.61 to 328.76 for WN18 in the
TransE case, which is non-trivial.

VI. CONCLUSION

This paper has tackled one of the most significant prob-
lems in integrating KGE with SPARQL. Since the embed-
dings obtained from KGE methods are stored in spatial
DBMSs, the B+-tree indexing in SPARQL query processing
cannot be used. Thus, we have to utilize the NN search
methods in searching answer candidates, which essentially
introduces a critical performance bottleneck. To reduce the
performance issue, we propose a new loss function for KGE
methods that supports the NN search algorithms’ pruning
idea. In evaluations, we demonstrate that our method signif-
icantly improves both the response time and the accuracy in
terms of mean-rank and Hits@10.

REFERENCES

[1] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “A semantic
matching energy function for learning with multi-relational
data - Application to word-sense disambiguation.” Machine
Learning, vol. 94, no. 2, pp. 233–259, 2014.

[2] A. Bordes, N. Usunier, A. Garcı́a-Durán, J. Weston, and
O. Yakhnenko, “Translating Embeddings for Modeling Multi-
relational Data.” in Proceedings of NIPS’13, 2013, pp. 2787–
2795.

[3] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning
Structured Embeddings of Knowledge Bases.” in Proceedings
of AAAI’11, San Francisco, USA, 2011.

[4] G. Ji, K. Liu, S. He, and J. Zhao, “Knowledge graph comple-
tion with adaptive sparse transfer matrix,” in Proceedings of
AAAI’16, ser. AAAI’16. AAAI Press, 2016, pp. 985–991.

[5] H. Yoon, H. Song, S. Park, and S. Park, “A translation-based
knowledge graph embedding preserving logical property of
relations,” in Proceedings of NAACL’16, 2016, pp. 907–916.

[6] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity
and relation embeddings for knowledge graph completion,” in
Proceedings of AAAI’15, ser. AAAI’15, 2015, pp. 2181–2187.

[7] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph
embedding via dynamic mapping matrix,” in Proceedings of
ACL’15, 2015, pp. 687–696.

[8] H. Xiao, M. Huang, Y. Hao, and X. Zhu, “Transg : A
generative mixture model for knowledge graph embedding.”
CoRR, vol. abs/1509.05488, 2015.

[9] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph
embedding by translating on hyperplanes.” in Proceedings of
AAAI’14. AAAI Press, 2014, pp. 1112–1119.

[10] S. Hong, T. Chakraborty, S. Ahn, G. Husari, and N. Park,
“Sena: Preserving social structure for network embedding,”
in Proceedings of the 28th ACM Conference on Hypertext
and Social Media. ACM, 2017, pp. 235–244.

[11] L. Zou, L. Chen, and M. T. Özsu, “Distance-join: Pattern
match query in a large graph database,” Proceedings of the
VLDB Endowment, vol. 2, no. 1, pp. 886–897, 2009.

[12] M. Mongiovi, R. Di Natale, R. Giugno, A. Pulvirenti,
A. Ferro, and R. Sharan, “Sigma: a set-cover-based inexact
graph matching algorithm,” Journal of bioinformatics and
computational biology, vol. 8, no. 02, pp. 199–218, 2010.

[13] Y. Hwang, B. Han, and H. K. Ahn, “A fast nearest neighbor
search algorithm by nonlinear embedding,” in 2012 IEEE
Conference on Computer Vision and Pattern Recognition,
June 2012, pp. 3053–3060.

[14] Y. Hel-Or and H. Hel-Or, “Real-time pattern matching using
projection kernels,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27, no. 9, pp. 1430–1445, Sept
2005.

