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Exploiting the Underlying System

Attackers controlling the underlying system
can dictate the output of ML systems
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Adversarial Machine Learning

Adversarial sample crafting exploits
the decision boundary:

* bypassing it (evasion)

- modifying it (poisoning)

MARYLAND Goodfellow, 1. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv:1412.6572.
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Exploiting the Implementation

- Can attackers exploit the implementation
In order to control the output of predictors?

<exploit>
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Problem

« Attackers can craft inputs that exploit the
Implementation of ML algorithms

— As opposed to perturbing the decision boundary of correct
Implementation

* These logical errors cause implementation to diverge
from algorithm specification

— Execution terminates prematurely or follows unintended code
branches; memory content changes

« Exploits have no visible effects on system functionality
— EXxisting defense tools are not designed to detect these errors
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Research Questions

* Can we map attack vectors to ML architectures?

* Can we discover exploitable ML vulnerabilities

systematically?

* Can we asses the magnitude of the threat?
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Outline

* Attack Vector Mapping
* Discovery Methods
* Preliminary Results

 Conclusions
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Impact of Exploits
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Attack Surface
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Attacking Feature Extraction (FE)
!

Training beled Cost Minimization Model
Phase Labeie ™ Function [ Algorithm > Representation
Samples
______ Prediction | — — — — — — — — —

Testing Unlabeled Feature Prediction
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Code Execution
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Attacking Prediction

Training beled Cost Minimization Model
Phase Labele Function[ > Algorithm > Representation
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Attacking Training
!

Training beled Cost Minimization Model
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Attacking Model Representation
!

Training beled Cost Minimization Model
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Attacking Clustering
!

Training beled Cost Minimization Model
Phase Labele > ™ Function [ Algorithm > Representation
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Outline

* Attack Vector Mapping
* Discovery Methods
* Preliminary Results

 Conclusions
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Fuzzing’

* Testing tool used for discovering application
crashes indicative of memory corruption

* Mutates input by flipping bits and serving it to the
program under test

* American Fuzzy LopZ?: tries to maximize code
coverage, favoring inputs that result in different
branches

Poisoning, Denial of
Evasion, Service
Misclustering (DoS)

1 - Miller, B.P., Fredriksen, L. and So, B., 1990. An empirical study of the reliability of UNIX uitilities.
2 - http://lcamtuf.coredump.cx/afl/
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Steered Fuzzing

* Find decision points in ML implementations that
could be vulnerable

* Set failure conditions to the desired impact (e.qg.
evasion)

if failure_condition then:
crash_program()

end if
Poisoning, Denial of
Evasion, Service
Misclustering (DoS)
MARYLAND Code Execution
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Outline

* Attack Vector Mapping
* Discovery Methods
* Preliminary Results

 Conclusions
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Targeted Applications

* OpenCV

— Computer vision library

* Malheur
— Malware clustering tool
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Bugs in OpenCV

CVE-ID

Vulnerability

Impact

2016-1516 Heap Corruption in FE Code Execution
2016-1517 Heap Corruption in FE DoS
n/a Inconsistent rendering in Evasion

FE
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Bugs in OpenCV

2016-1516

Vulnerability

Heap Corruption in FE

Code Execution

2016-1517

Heap Corruption in FE

DoS

n/a

Inconsistent rendering in
FE

Evasion

Vulnerabilities allow access to illegal memory locations
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Bugs in OpenCV

CVE-ID

Vulnerability

Impact

2016-1516

Heap Corruption in FE

Code Execution

2016-1517

Heap Corruption in FE

DoS

Inconsistent rendering in

FE

Evasion

Vulnerability allows legitimate input to bypass facial detection

Attack requires no queries to the model!
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Facial Detection Evasion Example

Rendering mutated image Rendering mutated image
using Adobe Photoshop using Preview
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More Evasion Examples

Breaking News

LIVE More sad news from the music industry, Justin
Bieber was found alive in his apartment earlier today. g isive

IROT U wmoire |1 @87

src: Imgur
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Bugs in Malheur

CVE-ID

Vulnerability

Impact

2016-1541 Heap Corruption in FE Code Execution
n/a Heap Corruption in FE Misclustering
n/a Loss of precision in Misclustering

Clustering
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Bugs in Malheur

CVE-ID

2016-1541

Vulnerability

Heap Corruption in FE

Impact

Code Execution

n/a

Heap Corruption in FE

Misclustering

n/a

Loss of precision in
Clustering

Misclustering

Vulnerabilities in underlying libarchive library affects
every version of Linux and OS X
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Bugs in Malheur

CVE-ID Vulnerability Impact

2016-1541 Heap Corruption in FE Code Execution

Heap Corruption in FE Misclustering
n/a oss of precision in Vlisclustering
Clustering

Additional Malheur vulnerability triggered by the one in libarchive

Attack can manipulate memory representation
of inputs they do not control!
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Bugs in Malheur

CVE-ID Vulnerability Impact
2016-1541 Heap Corruption in FE Code Execution
n/a Heap Corruption in FE Misclustering
n/a Loss of precision in Misclustering
Clustering

Casting double to float when computing L1 & L2 norms
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Results Summary

* Bugs in ML implementations represent a new
attack vector

— Disclosed 5 exploitable vulnerabilities in 2 systems,
many of which were marked as WONTFIX

— Response after reporting code execution vulnerability:

* Threat model also applicable outside the scope of
ML

— Any application that ingests uncurated inputs might be
vulnerable
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Outline

* Attack Vector Mapping
* Discovery Methods
* Preliminary Results

 Conclusions
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Conclusions

* Can we map attack vectors to ML architectures?
— Presented a baseline architecture and vector mapping

* Can we discover exploitable ML vulnerabilities
systematically?

— Steered fuzzing for semi-automatic discovery

« Can we asses the magnitude of the threat?
— Discovered exploitable vulnerabilities in real-world systems
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Thank you!

Octavian Suciu
osuciu@umiacs.umd.edu
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