PAGE: Answering Pattern Queries via Knowledge Graph Embedding

S. Hong°, N. Park*, T. Chakraborty^, H. Kang⁻, S. Kwon⁻

University of Maryland College Park, USA° University of North Carolina at Charlotte, USA* Indraprastha Institute of Information Technology Delhi (IIIT-D), India^ Electronics and Telecommunications Research Institute, South Korea

Graph Query Answering

a child ?c of the president ?p of the U.S, who had visited Canada before and is a friend of a pop star ?s

A Knowledge Graph ${\cal G}$

Graph Query Answering [cont]

A Knowledge Graph ${\cal G}$

Graph Query Answering [cont]

a child **C2** of the president **Trump** of the U.S, who had visited Canada before and is a friend of a pop star **P2**

Compute answers via subgraph isomorphism (matching)

A Knowledge Graph ${\cal G}$

Graph Query Answering: Problem

A Knowledge Graph G[What if **Canada** is missing in G]

Graph Query Answering: Problem [cont]

a child C1? or C2? of the president Trump of the U.S, who had visited Canada before and is a friend of a pop star P1? or P2?

Hard to find exact answers

A Knowledge Graph G[What if **Canada** is missing in G]

Knowledge Graph Embedding

A Knowledge Graph ${\cal G}$

An Embedding (features) M

Knowledge Graph Embedding [cont]

The embedding learns vector representations of v, r, u such that v, r, u minimizes the energy between v + r and u.

A Toy Knowledge Graph G

An Embedding in 3-D Space

Knowledge Graph Embedding [cont]

The embedding enables to **infer** the unknown vertex \mathbf{u} , connected to \mathbf{v} via \mathbf{r} , by selecting the closest vertex around the vector $\mathbf{v} + \mathbf{r}$.

A Toy Knowledge Graph G

An Embedding in 3-D Space

Knowledge Graph Embedding: Problem

A Toy Knowledge Graph ${\cal G}$

[Consider **single edge** or **unidirectional** paths]

A Graph Query Q

[Composed of **bidirectional** paths]

PAGE: Graph Pattern Query Answering via Knowledge Graph Embedding

Contributions:

- We propose a novel method that answers a graph pattern query via knowledge graph embedding
- Our method finds latent answers from a knowledge graph that carries incorrect or incomplete information
- Our method learns vector representations, considering the error of *bi-directional paths* in a knowledge graph

PAGE: Energy of a Bi-directional Paths Query

A graph query Q can be seen as a series of bi-directional path queries

A Graph Query Q

Bi-directional Path Queries

PAGE: Energy of a Bi-directional Paths Query [cont]

Energy of a bi-directional path:

Inverse operation:

Given a query ? $x \rightarrow u$, the inverse operation is to find x such that energy(x, r, u) = 0(ex. [in TransE] x = u - r)

Energy of a bidirectional path:

Given a h-hop bi-directional path p, whose left and right ends

are
$$\boldsymbol{u}$$
 and \boldsymbol{v} with a series of intermediate relations $r_1 \dots r_{h-1}$, $energy(p) = \begin{cases} ||\boldsymbol{x} + \boldsymbol{r}_h - \boldsymbol{v}|| & \text{if the last edge is } \overset{r_h}{\rightarrow} \boldsymbol{v} \\ ||\boldsymbol{v} + \boldsymbol{r}_h - \boldsymbol{x}|| & \text{if the last edge is } \overset{r_h}{\leftarrow} \boldsymbol{v} \end{cases}$

where x is a vector calculated from u up to r_{h-1} [in TransE].

PAGE: Energy of a Bi-directional Paths Query [cont]

Energy of a graph query:

 Let Q be a graph pattern query and q be an candidate answer to Q, the energy of the graph query is defined as:

$$energy(q) = \sum_{p \in path(q)} energy(p)$$

PAGE: Energy of a Bi-directional Paths Query [cont]

• Energy of a graph query [cont]:

• ex.

PAGE: Improve Training of KGE Methods

The training datasets used in most knowledge graph embedding methods only consist of **single edge (factoid) queries** but PAGE need to learn the latent representation for **graph queries**

A Knowledge Graph G

A Training Dataset for PAGE

PAGE: Improve Training of KGE Methods [cont]

Sampling spanning trees:

- 1. Randomly choose a terminal vertex from a knowledge graph G
- 2. Perform the Join 3(b) of the FFSM [2] e times so that a spanning tree that has e edges can be sampled
- 3. Repeat the step 1 and 2 until all vertices and edges in G are covered by at least c different sampled spanning trees

PAGE: Improve Training of KGE Methods [cont]

Decompose spanning trees into bi-directional paths:

PAGE: Improve Training of KGE Methods [cont]

Margin-based (Hinge) loss function

$$\mathcal{L} = \sum_{p^+ \in path(p)} \sum_{p^-} \max(0, \gamma + e(p^+) - e(p^-))$$

Maximize the error between the true and false bi-directional paths (ex., true path $p^+ = (x, r_1 ... r_{h-1}, u)$ false path $p^- = (x, r_1 ... r_{h-1}, v)$ or $(w, r_1 ... r_{h-1}, u)$

The optimization¹ [training]

$$\underset{M}{argmin} \mathcal{L}(M) + \lambda \mathcal{R}(M)$$

Evaluation

- Experimental Setups
 - Tasks: 1) Factoid query answering2) Graph query answering
 - Databases: FB15K and Nell186
 - Datasets: sampled spanning trees from these databases (training, testing, validating)
 - Baseline methods: TransE and SE¹
 - Metrics: Mean rank and Hits@10/100/1000

Evaluation [cont]

Factoid Query Answering

at most 13% better

Database	Metric	Type	TransE	PAGE-TransE	SE	PAGE-SE
FB15K	Mean Rank	Micro	181.76	178.98	408.69	375.48
		Macro	109.02	106.09	412.04	364.24
	$\rm Hits@10/100$	Micro	43.4% / 76.6 %	44.2% / 76.2%	$21.9\%\ /\ 59.2\%$	22.3% / 59.3%
		Macro	49.2% / 81.3%	49.4% / 80.9%	$27.6\% \ / \ 62.8\%$	28.9% / 62.8%
Nell186	Mean Rank	Micro	885.54	784.02	3412.0	3752.5
		Macro	885.54	784.02	4492.2	4736.8
	Hits@10/100	Micro	$41.5\% \ / \ 74.6\%$	38.6% / 72.4%	$10.1\% \ / \ 15.75\%$	9.2% / 14.5%
		Macro	41.5% / 74.6%	38.6% / 72.4%	3.3% / $8.0%$	3.0% / 7.1%

similar

Evaluation [cont]

Graph Query Answering

Graph query generation from the databases:

- 1. Merge training and testing datasets into a knowledge graph
- 2. Randomly choose a vertex v from the testing set
- 3. Create z paths by iterating the following steps z times
 - a) Choose a path length in between 2 and 4
 - b) Randomly select a path of the chosen length starting from v, whose path should have at least one edge in the testing set.
- 4. Convert v and all intermediate vertices of the paths into variables and create a graph query q from them
- 5. The correct answer to the query q is v; we are interested in finding a vertex mapped to the variable converted from v

Evaluation [cont]

Graph Query Answering

slightly improved

Database	Metric	Type	TransE	PAGE-TransE	SE	PAGE-SE
FB15K	Mean Rank	Micro	1150.5	1088	7493.5	7514.0
		Macro	2509.9	2362.8	7571.4	7933.7
	Hits@100/1000	Micro	$18.3\%\ /\ 56.7\%$	25% / 60%	$1.7\% \ / \ 5.0\%$	1.7% / 10%
		Macro	19% / 58.7%	24.3% / 61.7%	$2.0\% \ / \ 6.0\%$	2.0% / 7.7%
Nell186	Mean Rank	Micro	38.5	38	4803.6	4960.1
		Macro	769.4	491.1	5240.3	5431.8
	Hits@100/1000	Micro	64.8% / 89.4%	66.5% / 94.6%	$15.75\% \ / \ 31.4\%$	14.5% / 28.9%
		Macro	60.2% / 80.7%	65.4% / 87.2%	$7.9\% \ / \ 23.4\%$	7.1% / 21.3%

9% to 28% improvements

Conclusions

- We propose PAGE, a novel method that answers a graph pattern query via knowledge graph embedding
- PAGE is able to find latent answers from a knowledge graph that carries incorrect or incomplete information
- PAGE improves the performances in both the factoid query (at most 13%) and graph query answering (9 to 28%) tasks

Thanks!

Sanghyun Hong shhong@cs.umd.edu